Spectroscopy of the heaviest elements ## R. Julin¹ ¹JYFL University of Jyvaskyla, Finland rauno.julin@phys.jyu.fi The anomalously high production cross-section of about 2 microbarn for the cold fusion reaction ²⁰⁸Pb(⁴⁸ Ca,2n)²⁵⁴No was utilized in the in-beam gamma-ray studies of ²⁵⁴No, where the Gammasphere array was combined with the Fragment-Mass-Analyzer (FMA) at Argonne [1] and the Ge clover array (SARI) was combined with the RITU-gas-filled-separator at JYFL in Jyväskylä [2]. By employing the recoil- gating and recoil-decay-tagging (RDT) techniques the yrast line of ²⁵⁴No was identified revealing that the ²⁵⁴No nucleus is deformed with a deformation parameter, b₂=0.27(2). For further studies of ²⁵⁴No, the SACRED magnetic solenoid electron spectrometer was combined with RITU for in-beam electron RDT measurements. In a careful analysis of resulting prompt recoil-gated electron-electron coincidence spectra of ²⁵⁴No it was found that a broad distribution under the discrete electron lines arising from transitions within the ground state band in ²⁵⁴No is not due to random events but consists of high-multiplicity events, obviously originating from cascades of highly converted M1 transitions within rotational bands built on high K states in ²⁵⁴No [3]. Following the success of the RDT experiments at JYFL, the Jurosphere2 array + RITU system was employed in an in-beam gamma-ray study of 252 No for which the production cross-section in the 206 Pb(48 Ca,2n) reaction is only 300 nanobarn [4]. The yrast rotational band of 252 No was observed up to I=20 indicating that 252 No is less deformed than 254 No and showing evidence for quasiparticle alignment. Both the 254 No and 252 No data reveal that the fission barrier exists at least up to I ~ 20 in these nuclei. In order to gain experimental knowledge of single-particle states in heavy nuclei the next in-beam recoil-tagging experiment in Jyväskylä was focused on ²⁵⁵Lr and in Argonne on ²⁵³No. They were produced via the ²⁰⁹Bi(⁴⁸Ca,2n) and ²⁰⁷Pb(⁴⁸Ca,2n) reactions, with cross-sections of about 300 nanobarn and 500 nanobarn, respectively. Strong X-ray peaks in the resulting spectra indicate that the decay along the yrast line of these nuclei proceeds by strongly converting M1 transitions, which calls for electron-spectroscopic methods. In the present contribution, the results obtained at Jyväskylä will be discussed in more detail. New data from the on-going RDT campaign at JYFL with the new JuroGam array and the GREAT spectrometer combined with RITU will be shown. ## References - [1] P. Reiter et al., Phys. Rev. Lett. 83, 1108 (1999). - [2] M. Leino et al., Euro. Phys. Jour. A6, 63 (1999). - [3] P.A. Butler et al., Phys. Rev. Lett. 89, 202501 (2002). - [4] R.-D. Herzberg et al., Phys. Rev. C65, 014303 (2002).